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Preface

Injection molding was, for many years, a space occupied by the
experienced masters of the plastics industry. Fortunately, today there are
several techniques that accelerate learning and mastery of injection
molding.

We have experimented with numerous molders of all calibers. Among us
we have never found two that use identical molding techniques. Not only
are the molding techniques different, but language, order of execution,
definitions, parameter usage, equipment identification, procedures, and
communication are not equal. These are the reasons that motivate the
writing of this book.

Universal Molding™ (abbreviated MU™) aims to unify molding styles,
use valid process definitions, use Universal language, and standardize clear
and representative procedures for all stages of injection molding.

This book is not limited to just newcomers to the industry; it is also
recommended for experienced molders who wish to standardize and
increase the number of competent molders in their sector. Universal
Molding™: Systematic Injection Molding Optimization Method (MU™)
is for anyone who wants to learn systematically and effectively about
injection molding. MU™ guides the molder to determine the Universal
parameters characteristic of the mold, regardless of the injection machine
used. There is a concern that affects a minority in the plastic industry,
artificial intelligence. We see it as a tool that will help address the lack of
standardization and empirical approaches in process parameter
optimization. The integration of artificial intelligence in MU™ considers
the fundamental principles of standardization, rapid learning, efficient
processes, and significant benefits. We must all strive to improve, accept,
and learn new methodologies and technologies that strengthen continuous
growth.
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Prologue

What is the definition of an “optimal” injection polymer molding
process? In reality, we do not establish an optimal process, but instead
define an optimal operational window around the values of certain molding
parameters that an optimization laboratory leads us to establish and define
as 'nominal’. Using the tools provided by the internet we can find
countless definitions and/or methods on what is an optimal process, how to
establish it, and even how to monitor it. These definitions, in short,
establish that an optimal polymer molding process is "the result of a
particular combination of molding parameter values... inside an
operational window... able to consistently produce a plastic part that meets
all cosmetic, dimensional and functional design requirements... in the
shortest machine time possible.” This, for any combination of raw
material, mold design and molding cell (i.e. injection machine, dryer,
temperature controls, etc.). Similarly, that optimal process cannot be if it
goes against the ability of the mold, or even the molding machine, in order
to repeat the same cycle of behavior infinitely.

The author of the book has devoted much of his professional life to
systematically identifying two things. First, how to establish that optimal
operational window in a molding process; and second, how to make that
optimal process window for any combination of raw material, mold and
molding equipment the same regardless of who runs it or where the
optimization lab is performed. That is why “Universal " is in the title of
this book. It is the intention of the author, with the tools presented in this,
his book, to make the Process Engineer able to identify the minimum
requirements with which each of the equipment and utilities that make up
the molding cell must meet. Once the equipment is successfully selected,
it provides the tools for the selected equipment to become the foundation
on which, in a complete way, the Process Engineer can develop the
laboratory and establish the design experiments that will shape that
combination of 'nominal’ parameters around which will define the limits of
that optimal operation window being validated. This....in the shortest
machine time possible.

Felix Col6n Ortiz
Injection Molding Process & Tooling Engineering Professional
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In this section we want the readers to familiarize themselves with the
terminology, emphasizing those parameters that are most significant to the
process and establishing the language used in this book.

What is Universal Molding™?

Universal Molding™ (MU™) is an injection molding process
optimization discipline. It was developed with the collaboration of the
Caribbean plastic industry and the academia (professor and students) from
the University of Puerto Rico, Mayagtiez Campus (UPR RUM).

MU is a discipline that emphasizes the maximization of resources and
focuses on the quality of the product, utilizing process optimization
methods proven by means of organized and scientifically backed molding
techniques. This tecno-scientific background increases efficiency,
decreases product cost, and shortens manufacturing cycles.

MU™ is a common language used by molders to eliminate terminology
confusion. The equipment is labelled with a language that represents their
capacities. It is this language of Universal process parameters that
simplifies the transference of processes between machines. It is a language
that defines a product and its utilization.

MU™ is an organizing committee (or Universal committee). It is a chosen
group that promotes that discipline. It is a Universal committee
represented by all departments of the Universal factory. It is represented
by the Production, Quality Control, Equipment Maintenance, Mold
Maintenance, Engineering and Sales departments.

MUT™ is an endless discipline that never ceases to grow or improve. The
Universal committee has the responsibility to evaluate and unanimously
adopt procedures that improve the existing ones.

MU™ is based on precise and representative process procedures. At each
stage, a procedure is followed to determine the parameters, either through
linear equations or, in many cases, with a nonlinear component generated
by artificial intelligence (Al).

MU™ is maximizing the utilization of the machinery. It is determining the
appropriate equipment and its optimal process parameters.

15



Some of the techniques used are:

1- Injection machine rheology. This is an effective, proven technique
used to determine injection time. Using a graph, it shows the effect of
the injection time versus energy per unit of volume.

In the following graph, the area below the curve demonstrates the
percentage of energy consumed for each decrement in injection time.
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I-1. Injection molding machine rheology graph

Note that the power consumption increases as the injection time decreases.
This graph shows that the power required at higher injection rates is
considerably high, or the power consumed by the injection unit is more
significant at lower injection times. The idea is to select an injection time
in the zone in which the time stops contributing with an increase in power.

Later we will explain how to develop and utilize this injection molding
rheology graph.

2- Approximated rheology. Developing a rheology laboratory with an
injection machine consumes time and resources. With approximated
rheology, a mathematical prediction technique, the laboratory can be
achieved in less than a third of the time.
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The following graph of injection time versus power by volume compares
the two methods: conventional machine rheology and the approximated
method.

Conventional and Approximated Rheology Graphs
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I-2. Conventional and approximated rheology graph

Both methods conceptually function in the same way. The difference is
that using the approximated method consumes less time and resources.

Again, the development of these graphs will be explained in later chapters.
Fundamentals of the Injection Molding Process

The basic stages of the injection molding process are:
- injection
- changeover or transfer
- hold
- gate freeze
- cooling
- recovery

Each stage has a function and a specific result. Understand each one of

these stages thoroughly since their descriptions will be continually
referenced.
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Injection - In this stage the mold cavities and runner are filled close to 95%
of their total volume, and the screw acts like a piston that transfers melt
from the injection unit to the mold. Here is where you program a velocity
or injection flow rate that guarantees the best melt properties. These
properties could be parts without burns, no flowlines, no degradation,
minimal stress concentration, etc. When the hot melt enters the mold, it is
met with cold walls and rapidly densifies until it solidifies. The slow fill
increases densification or viscosity and, consequently, it could make filling
the mold difficult and may even cause the melt to solidify prematurely
before the mold has been filled. In this stage the injection time, as well as
the injection pressure, are results and not control parameters. Do not
confuse these with injection pressure limit or with injection time limit,
which are limits that are programmed to protect the tooling and the
equipment. This stage is known as the injection speed control stage.

Transfer (changeover) — This is what determines the end of the injection
stage. Once the injection unit has filled the mold close to 95%, the
injection stage ends, and the hold stage begins. The injection unit comes
with a linear encoder that measures the injection screw displacement,
which is how the injection unit knows when the melt is close to filling 95%
of the mold. Avoid trying to fill the mold 100% in the injection stage. Let’s
see some of the reasons why:

- It could cause flash on the molded parts. What stops the screw is
the melt in front of the injection unit; trying to stop at exactly
100% without opening the mold would be difficult.

- At a high speed, trying to fill a mold to 100% could create a
bounceback effect on the screw. Plastic melt is compressible and
during injection it is placed under pressure. This pressurized melt
can act like a compressed spring, pushing the injection backwards
and causing a suckback effect that pulls back part of the melt that
was injected.

- Another reason that it should not be done is because of material
shrinkage. Melt occupies more space than solidified material.
Once the melt enters the mold it will cool, gradually shrinking and
leaving space for more material.

Note: Some molds present an extreme difficulty in filling, for example,
nylon ties which are long and thin, or micro-molding applications with
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narrow and awkward spaces for filling. In these cases, a filling percentage

higher than 95% may be required.
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I-3. The injection stage



Hold - In this stage the screw continues to move like a piston, forcing more
melt into the cavities until it fills the portion that was not filled in the
injection stage. Without opening the mold, the injection unit compresses
the melt, packing more material into the mold until the cavities are
completely filled. Here the molder adjusts the compacting pressure.

During this stage we achieve the proper weight for the molded parts, or
what we Universal Molders call mass dimensions. The mass dimensions
are those that are a function only of the quantity of material and should not
be confused with the dimensions that are due to the effect of material
shrinkage. Shrinkage is controlled during the cooling stage. As indicated
previously, during the hold stage we only control the mass dimensions, the
dimensions that are a function of the quantity of material.

Gate Freeze — During the hold stage, the parts are pressurized until the
material in the gates solidifies, creating a seal that keeps the melt inside the
cavities. Let’s look at the spaces that the plastic occupies in the mold.

incomplete cav ities
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I-4. The spaces that the plastic occupies in the mold

A gate is a small opening through which the melt enters the cavities. The
melt enters the mold through a sprue and travels through the runner until it
reaches the cavity gates. The melt is forced through the narrow openings
of the gates until the cavities are filled. The plastic is held inside the cavities
until the gates solidify. It is important to understand:
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- If you remove the hold pressure prematurely, the melt will
return to the runner and even to the injection unit.

- If the hold time is more than required, the molder will end up
“molding runners”.

In some molds with hot runners, the melt never solidifies and is integrated
as part of the filling for the next parts. The goal of this type of mold is to
reduce the waste of material from the sprue. However, even in this case,
the gates on the cavities must solidify before releasing the hold pressure.

In other molds, in addition to having hot runners, valves are integrated into
the gates. These gate valves remain open during filling and close once the
holding is complete.

The screw acts as a piston thanks to the check ring that floats between the
screw and the screw tip. During injection, this check ring moves against
the screw, creating a seal and keeping the melt from returning to the screw.

T Rr"egd(ﬂ "\“

I-5. The check ring

During injection, the pressure in front of the check ring is greater than the
pressure on the screw side, causing the check ring to move against the
screw to create a seal.

There exist some screws that do not have a check ring. Rigid PVC material
IS very sensitive to the friction of the melt against the check ring, and it is
common to see that this type of system does not use any check ring.
Instead, these screws come equipped with an anti-rotation mechanism so
that they will not turn as a consequence of excessive melt pressure.
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Cooling — In this stage, heat is removed from the parts, until they can be
easily demolded with acceptable thermal dimensions. Thermal dimensions
are dimensions that are a function of shrinkage and not of the quantity of
packed mass. The molecules of thermoplastic melt are in continuous
movement; as they cool, they look for conformity and accommodate
themselves to occupy less space. The objective is to paralyze the molecular
activity and manipulate this shrinkage to our advantage.

This means:

- Cold molds and extended cooling times result in parts with thicker
walls.
- Hot molds and short cooling times result in parts with thinner walls.

Thermal dimensions and some mechanical properties are a function of how
quickly the heat is being removed from the parts. These mechanical
properties could include rigidity, translucence, crystallinity, etc. Later on,
we will explain how thermal dimensions are a function of cooling time and
mold temperature.

Recovery - In this stage, the screw reloads material for the next shot. The
main goal of this stage is to produce a homogeneous melt. During recovery
the check ring moves away from the screw, which allows the melt to flow
to the front of the screw as the screw turns.

I-6. Position of the check ring during recovery

The melt that accumulates in front of the screw is what pushes the screw
backwards.

Recovery occurs at the same time as the cooling stage. Under normal
circumstances recovery ends before the cooling stage ends and, if the
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cooling stage ends first, permission to open the mold is denied by the
machine’s controls. Under these circumstances, where the permission to
open the mold has been denied and if no alarms exit that would cause the
process to stop, the cooling time will be extended, altering the thermal
dimensions.

Imagine what would happen if the mold opened during the recovery stage.
The melt would drool into the mold. During recovery, the plastic is
pressurized and the mechanism that holds the melt in place is the filled
mold. As a rule, recovery should end close to a second before cooling.
Permission to open the mold during recovery can only occur if the injection
unit has been equipped with a valve on the nozzle.

It is important to know that the injection unit utilizes two sources of heat
to melt the plastic: the heating bands on the barrel and friction. Generally,
50% of the heat comes from the heater bands and the remaining 50% comes
from the friction of the plastic moving inside the barrel.

Later we will discuss in more detail the parameters that govern recovery,
which are recovery speed, recovery position, backpressure, decompression
and melt temperature.

Mold Movement — During this stage we demold the parts. Once the
cooling stage has ended, the sequence is: the mold opens, if cores exist they
will disarm in order to liberate the parts, the parts are ejected, the cores are
relocated into the mold, the mold begins to close, the mold protection
system is activated and, if the mold protection does not detect any issues,
the injection machine reaches full closure force, and a new cycle begins.
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I-7. The recovery stage
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