Appendices

I – Troubleshooting

II – Universal Mold Data

III – Universal MoldingTM Equations

IV – General Procedures for Universal MoldingTM

V– English Terms in Spanish

VI – Spanish Terms in English

VII – Operational Costs

I - Troubleshooting

During troubleshooting, experience plays an important factor. In the event there is a problem that you cannot solve, seek help. Do not sacrifice production or quality; ask. This list is only a reference; use it judiciously.

Possible Causes	Actions
1. Resin is too cold	1.a. Increase backpressure.
	1.b. Increase melt temperature.
2. Material degradation in the barrel	2.a. Reduce melt temperature.
_	2.b. Reduce backpressure.
	2.c. Reduce the injection rate.
	2.d. Purge, if necessary.
3. Material contamination	3.a. Verify material in the hopper.
	3.b. Purge, if necessary.
4. Material degradation during the	4. Decrease dryer time and/or
drying process	temperature.
5. Moisture in the material	5. Verify moisture content, dry
	properly.

Brittle parts - The parts become brittle or break

Bubbles (voids) - Air trapped inside the part

Possible Causes	Actions
1. Moisture in the material	1. Check moisture content, dry properly.
2. Material is too hot	2. Decrease the melt temperature by adjusting to a suitable barrel temperature profile.
3. Inadequate venting	3. Ensure that the mold has adequate and clean vents.
4. Internal bubbles caused by shrinkage	4.a. Increase backpressure and/or hold pressure.4.b. Decrease the melt temperature.

Weld line - Lines on the part formed by two or more melt flows joining together

Possible Causes	Actions
1. Low mold temperature	1. Increase mold temperature.
2. Material is too cold	2. Increase melt temperature.
3. Low injection rate	3. Increase speed. Injection time
	should be significantly reduced.
4. Humid resin	4. Dry material properly.

Fading - Inadequate color

Possible Causes	Actions
1. Degraded material in the barrel	1. Purge the barrel.
2. High melt temperature	2. Decrease melt temperature by adjusting to a suitable barrel temperature profile.
3. Contaminated material	3. Check the material.
4. Inadequate vents	4. Clean existing vents or ventilate mold properly.

Burns - Marks on the part due to degradation

Possible Causes	Actions
1. High injection speed	1. Decrease injection speed.
2. High backpressure	2. Decrease backpressure.
3. Inadequate vents	3.a. Verify that there are vents.
_	3.b. Clean vents.
4. Problems in mold design (material	4.a. Change the location of the gate.
suffers friction, causing degradation)	4.b. Ensure that the part has
	generous radii (no sharp
	corners).
5. Nozzle hole is too small or clogged	5. Replace or clean the nozzle.
6. High screw recovery	6. Decrease screw recovery speed.
7. High melt temperature	7. Decrease the melt temperature by
	adjusting to a suitable barrel
	temperature profile.

Cloudiness - Cloudy appearance in parts (more noticeable in clear parts)

Possible Causes	Actions
1. Material contamination	1.a. Check material and change if
	necessary.
	1.b. Increase melt temperature.
2. Gases or moisture in the resin	2.a. Dry material properly.
	2.b. Ventilate mold properly.
3. Material is too cold	3. Increase the melt temperature.
4. Mold is too cold	4. Increase mold temperatures.
5. Mold release	5. Eliminate the use of mold release.

Flash - Excess plastic around the parting line

Possible Causes	Actions
1. High hold pressure	1. Decrease hold pressure.
2. Mold is too hot	2. Lower mold temperatures.
3. Inadequate closing force	3. Increase tonnage.
4. High melt temperature	4. Lower the melt temperature.
5. Late transfer position to hold	5. Adjust to an appropriate transfer
	position and compensate by
	adjusting the same distance to the
	recovery position.
6. Material with moisture	6. Improve drying.

Flow lines - Marks in the direction of the melt flow

Possible Causes	Actions
1. Low mold temperature	1. Increase the mold temperature.
2. Material is too cold	2. Increase the melt temperature.
3. Inadequate runner/gate	3. Check the size of runner and gates,
	and request a redesign.
4. High injection speed	4. Decrease injection rate.
5. Humid resin	5. Dry material properly.

Worm-shaped jetting on the surface of the part

Possible Causes	Actions
1. Gates too small	1. Verify and request a gate
	redesign.
2. Poorly localized gate	2. Request a redesign.
3. Injection speed too high	3. Slow down the injection rate.
4. Small nozzle hole	4. Replace nozzle.

Surface delamination – Layer separation on the surface of the pieces

Possible Causes	Actions
1. Contaminated material	1. Check the material and replace, if
	necessary.
2. Low melt temperature	2. Adjust to a suitable barrel
	temperature profile.
3. Melt mixture is not uniform	3. Increase backpressure.
4. Low mold temperature	4. Increase mold temperature.
5. Low injection rate	5. Increase speed. Injection time
	should be significantly reduced.

Incomplete Shot - Parts are not completely filled

Possible Causes	Actions
1. Low hold pressure	1. Increase hold pressure.
2. Short hold time	2. Increase hold time.
3. Unbalanced cavities	3. Balance the fill and redesign the mold, if
	necessary.
4. Low melt temperature	4. Increase the melt temperature by
	adjusting to an appropriate temperature
	profile.
5. Small runners/gates	5. Request a redesign of runners and/or
	gates.
6. Low mold temperature	6. Increase mold temperature.
7. Low recovery position	7. Verify that the transfer position is
	adequate, and then increase the recovery
	position.

Sink - Depressions or sunken areas in sections of the parts

Possible Causes	Actions
1. Low injection rate	1. Increase speed. Injection time
	should be significantly reduced.
2. Inadequate design of the mold and/or	2. Redesign part (uniform wall
part	thicknesses are required).
3. Low melt temperature	3. Increase melt temperature with a
	suitable temperature profile.
4. Gas trapped in the mold	4. Vent the mold properly.
5. Low hold pressure	5. Increase hold pressure.
6. Excessive mold temperature causes	6. Lower the temperature of the
shrinkage	mold.
7. Low hold time	7. Increase hold time.
8. Low mold temperature causing	8. Increase the temperature of the
premature gate freezes	mold.

The parts stick to the cavity

¥V	
Possible Causes	Actions
1. Scratched cavity	1. Polish in the direction of
	demolding.
2. Static	2. Demagnetize the cavity.
3. High hold pressure	3. Decrease the hold pressure.
4. Short cooling time	4. Increase cooling time.
5. Shrinking in the wrong direction	5. Set the temperature of the core so
	it is higher than the cavity
	temperature.
6. Insufficient draft and/or detachment	6. Consider changes in part and/or
angle	mold design.

The parts stick to the core

Possible Causes	Actions	
1. High hold pressure	1. Decrease the hold pressure.	
2. High core temperature	2. Adjust the mold temperatures.	
3. High melt temperature	3. Lower the melt temperature with a	
	suitable temperature profile.	
4. Insufficient draft and/or detachment	4. Consider changes in part and/or	
angle	mold design.	
5. Static	5. Demagnetize the cavity.	

Silver lines - Imperfections on the surface of the parts

Possible Causes	Actions
1. Moisture in the resin	1. Dry the material properly.
2. Obstruction in the nozzle	2. Clean the nozzle.
3. High injection speed	3. Slow down the injection rate.
4. High melt temperature	4. Lower the melt temperature with an appropriate barrel temperature profile.
5. Nozzle is too hot	5. Lower nozzle temperature.
6. Contaminated resin	6. Check the material; replace it if necessary.
7. Gates are too small	7. Increase gate size.

Buckling - Twisting or curving of the parts due to uneven shrinkage

Possible Causes	Actions	
1. Hot parts upon ejection	1.a. Lower the mold temperature.	
	1.b. Increase the cooling time.	
2. Uneven part cooling	2. Adjust the temperatures of the	
	mold faces.	
3. Non-uniform wall thickness	3. Redesign the part.	
4. Parts are overpacked	4. Decrease the hold pressure.	

Maximum injection pressure limit alarm

V 1		
Possible Causes	Actions	
1. Blocked cavity	1. Stop the machine. Check and	
	clean the mold.	
2. Injection stage set to fill too much.	2. Reduce the recovery position to	
	about 95% of the mold.	

Cushion lower limit alarm

Possible Causes	Actions	
1. Dirty or defective check ring	1. Check and clean or replace.	
2. Melt leaking between sprue bushing	2. Check if any of the components	
and nozzle tip	are scratched and/or crushed, if	
	the hole diameters are incorrect,	
	or if the contact radii are	
	incorrect. If so, replace them.	
3. The melt is leaking into the mold,	3. Check, and if so, make the repair	
either as flash, filtration between	or correction as soon as possible.	
actuators, or within the hot runner	Failure to do so could result in	
system.	extensive damage to the mold.	

Cushion upper limit alarm

Possible Causes	Actions
1. Blocked cavity or a clogged gate.	1. Check and clean.
2. If it's a hot-runner mold, it could be	2. Check, clean or replace.
that a hot tip is clogged or damaged.	

Recovery time limit alarm

Possible Causes	Actions
1. Inconsistent resin flow, which may	1a. Reduce the temperature of the
be due to the heat from the barrel	heat zone near the feed throat.
affecting the feed throat, causing	1b. Check the water flow in the
material to clump.	throat of the barrel. If it's
	clogged, correct it.
	1c. Check the temperature of the
	water in the throat of the barrel
	and reduce it if it is too high.
2. The feed hopper is running out of	2. Check and correct the material
resin.	supply.

II - Universal Mold Data

Remember that these parameters are for the mold and the plastic. To be used they must be transferred or converted into injection machine parameters.

- 1. mold name and number
- 2. name and type of material
- 3. filling time to get a fill of about 95%
- 4. weight of the parts at the time of transfer, with the hold turned off
- 5. plastic pressure at the time of transfer
- 6. total cycle time
- 7. hold time
- 8. hold pressure
- 9. total weight or total injection volume
- 10. cooling time
- 11. mold temperatures
- 12. flow and water to the mold
- 13. water temperatures entering the mold
- 14. water temperatures exiting the mold
- 15. water pressures entering the mold
- 16. water pressures exiting the mold
- 17. melt temperature entering the mold
- 18. time it takes to open the mold and eject the parts
- 19. time to completely close the mold
- 20. recovery volume

III - Universal MoldingTM Equations

1- Drying

Drying hopper volume:

To determine the size of a dryer hopper, you need to know:

- the material consumption in lb/hr or kg/hr
- the drying time in hours
- the bulk density of the plastic resin in lb/ft^3 or kg/m³.
- I. With virgin material:

Volume = consumption x
$$\frac{drying time}{bulk density}$$

II. With virgin and regrind material:

Volume =
$$T * C * (\frac{\% V}{D_{virgin}} + \frac{\% R}{D_{regrind}})$$

Where:

T = drying time (hours) C = resin consumption (lb/hr or kg/hr) $D_{virgin} = \text{virgin material density (lb/ft³ or kg/m³)}$ $D_{regrind} = \text{regrind density (lb/ft³ or kg/m³)}$ %V = % of virgin %R = % of regrind

Dry air flow from the dryer: Flow = material flow factor * consumption

> Maximum material factor = 1cfm / (1lb of material/hr) = (63 liters/min) / (1kg of material/hr)

Delta temperature:

 $\Delta T_{Fahrenheit} = 9/5 * \Delta T_{Celsius}$ $\Delta T_{Celsius} = 5/9 * \Delta T_{Fahrenheit}$ Recovery consumption = (injection shot weight) / (recovery time)

Material consumption:

Material consumption= (total amount of material) / (process cycle time)

2- Cooling

Removed heat:

Removed heat = (total quantity of material) * (energy required for the material) (process cycle time)

Empirical equation to determine the required water flow of a chiller:

$$gmp = \frac{24 * (chiller tons)}{Delta T}$$

Where:

- gpm = gallons of water per minute
- chiller tons = chiller tons required to cool the mold
- Delta T ($^{\circ}F$) = outlet water temperature inlet water temperature

Extended cooling time:

Extended cooling time = recommended cooling time x 1.3

Calculated method to determine the cooling time (*E*):

$$E = -\frac{G^2}{2\pi\alpha} \ln\left(\frac{\pi}{4} \frac{(T_{\rm x} - T_{\rm M})}{(T_m - T_{\rm M})}\right)$$

Where:

 T_x = deflection temperature T_M = mold temperature T_m = melt temperature

G = part thickness $\alpha =$ thermal diffusivity

Material	α	T _m (⁰F)	T _M (°F)	T _X (°F)	
ABS	0.000185	475	135	203	
CA, CAP	0.000181	400	110	192	
CAB	0.0002	400	110	201	
HIPS	0.000059	440	85	185	
IONOM	0.000148	440	85	125	
LDPE	0.000176	390	75	113	
MDPE	0.000194	340	75	155	
HDPE	0.000217	480	75	186	
PA 6, 6/6	0.000109	530	150	356	
PC	0.000132	560	180	280	
PET	0.000138	540	120	153	
PP	0.000077	470	105	204	
PPO/PS	0.000144	530	185	234	
PPS	0.000166	630	210	210	
PS g.p.	0.000087	420	85	180	
PSU	0.000149	700	250	345	
PVC	0.000107	380	85	156	
PVCrig	0.000123	380	85	174	
SAN	0.000088	450	150	225	

Pressure loss (Delta P) and water temperature loss (Delta T):

Delta P =

inlet water pressure - outlet water pressure

Delta T =

outlet water temperature - inlet water temperature

3- Clamp

Clamping force:

Clamping force = (pressure factor of the melt) x (projected area)

US ton = 2000 lbf Metric ton = 1.10 x US ton US ton = 8.90 Kilo-Newtons (kN) Metric ton = 9.81 Kilo-Newtons (kN)

Material	Material US ton/in ²		kN/cm ²	
Polypropylene	1.5	3.5	2.1	4.8
High density polyethylene	1.5	2.5	2.1	3.5
Low density polyethylene	1.0	2.0	1.4	2.8
Nylon 66	3.0	5.0	4.1	6.9
Polycarbonate	3.0	5.0	4.1	6.9
Flexible PVC	1.5	2.5	2.1	3.5
Rigid PVC	2.0	3.0	2.8	4.1
Polystyrene	2.0	4.0	2.8	5.5

Thin wall calculation, TW:

A thin wall calculation is a factor that represents fill difficulty. This factor takes into consideration the distance that the melt must travel and how narrow those passages are. This factor is represented by the following equation:

Thin wall calculation = $\frac{(\text{farthest flow path})}{(\text{thinnest wall on the path})}$

TW	Criteria		
	Use the highest pressure factor.		
≥ 200	Force =		
	(projected area) x (highest pressure factor)		
≤ 100	Use the smallest pressure factor.		
	Force =		
	(projected area) x (smallest pressure factor)		
between 100 and 200	Interpolate between pressure factors.		
	Force =		
	(projected area) x (interpolated pressure factor)		

Lateral action resulting in additional clamping force:

These wedges are manufactured at an angle, φ , and only a fraction of this lateral force will be seen in the direction of the closing wedges. This resulting force in the direction of the press is determined by multiplying the lateral force by the tangent of the wedge's angle:

Force as a result of lateral action = lateral force $x \tan(\varphi)$

4- Injection unit

Density and specific density:

Density =
$$\frac{\text{mass}}{\text{volume}}$$

Specific density = $\frac{\text{material density}}{\text{water density}}$ Where the density of water is 1 g/cm³ at room temperature.

Injection speed and flow:

Injection speed =
$$\frac{\text{distance}}{\text{time}}$$

Injection flow = $\frac{\text{volume}}{\text{time}}$
Injection flow = $\frac{(\text{screw diameter})^2 * \pi/4 * (\text{displacement})}{\text{time}}$

Barrel utilization:

Barrel utilization (%U) is a comparison between the maximum capacity of the injection unit and the capacity required to fill the mold.

%U = % of Utilization $= \frac{\text{(volume used)}}{\text{(volume the barrel is capable of)}} * 100\%$

Where:

volume used = the volume programmed to the mold's requirements volume the barrel is capable of = the maximum recovery volume of the screw

Recovery position:

The recovery position is the place the screw should reach in order to fill the mold.

Recovery position = transfer position + injection displacement

Combining the equations of weight, density, and volume, we summarize:

Injection displacement =
$$\frac{1.27W}{\rho D^2}$$

Recovery position = transfer position + $\frac{1.27W}{\rho D^2}$

Where:

 ρ = specific density of the melt (gr/cm³)

W = weight of parts and runner (gr)

D = diameter of the injection screw (cm)

Note that this equation does not consider that, during injection, only about 95% of the mold is filled. This excess is ignored due to the fact that, during the injection stage, some material always sneaks to the other side of the check ring, whether during check ring closure or as a result of leaks between the check ring and the barrel.

Discharge density:

This density is more precise for determining the recovery positions, since it considers several factors:

- mass
- volume
- melt temperature
- back pressure
- melt leaks through the check ring during injection.

Discharge density is calculated in an existing process by measuring the injected volume and the total injected weight. The injected volume is determined using the cylinder equation:

Volume = area x length

Where:

Area =
$$(\text{screw diameter})^2 * \frac{\pi}{4}$$

Length = recovery position – cushion position

The injection weight is determined by weighing the molded parts plus the runner (if one exists).

Discharge density =

total injection weight

 $((\text{screw diameter})^2 \times \pi/4) \times (\text{recovery position} - \text{cushion position})$

If the discharge density is known, the injection displacement and the recovery position equations would look like this:

Injection displacement₉₅ =
$$95\% \frac{1.27W}{\rho_d D^2}$$

Recovery position =
transfer position + 95% *
$$\frac{1.27W}{\rho_d D^2}$$

Where:

 ρ_d = discharge density (g/cm³) W = weight of the parts with the runner (g) D = diameter of the injection screw (cm)

Rheology by power:

Peak power – The maximum power reached by the injection unit, usually at the transfer position (change from injection to hold).

Peak power =

average injection flow x pressure at the transfer position

Average injection flow – This flow is a function of the volume injected during the injection stage and the injection time.

Average injection flow = injection volume / injection time

<u>Rheology by viscosity</u>: Change in speed V_x , in the direction of Y;

Shear rate = $\dot{\delta} = \frac{\text{change in speed}}{\text{distance}} = \frac{\Delta V_x}{\Delta Y}$

Shear stress = viscosity x shear rate $\tau = \mu x \dot{\delta}$

Relative viscosity = plastic pressure x injection time

Relative shear rate = $\frac{1}{\text{injection time}}$

Intensification ratio, $R_i =$ plastic pressure, P_p / hydraulic pressure, P_H

$$\mu_R = P_H R_i T$$
$$\mu_R = P_P T$$

Approximated rheology:

Initiation of the injection time plateau $T_{plateau} = T_{min} + (T_{max} - T_{min}) / 9$

Conventional molding industries $T_{intermediate} = T_{min} + (T_{max} - T_{min}) / 18$

Industries that mold sensitive materials $T_{sensitive} = T_{min} + (T_{max} - T_{min}) / 12$

High-volume injection industries $T_{fast} = T_{min} + (T_{max} - T_{min}) / 36$ Where:

 T_{min} - injection time for the maximum injection speed T_{max} - injection time for the minimum injection speed $T_{plateau}$ - injection time where the plateau starts on the graph

Fill balance:

Sum of the weight of all cavities:

$$W_T = \sum_{\# cav.}^1 W_i$$
, $i = 1$ to # of cavities

Volume deviation for each cavity, Vd_i

$$Vd_i = \left[\frac{W_i}{\left(\frac{W_T}{\# cavities}\right)} - 1\right]$$
 100%, $i = 1$ to # of cavities

% injection volume by stage:

% volume at injection stage = <u>recovery position - transfer position</u> recovery position - cushion position * 100

If you are using a control system with *Universal* parameters and working with volume instead of position, apply this formula:

% volume at injection stage = recovery volume – transfer volume recovery volume – cushion volume * 100%

% volume at hold stage = 100% - % volume at injection stage

IV - General Procedures for Universal MoldingTM

I. Sizing and Initial Data

1. Determine the clamping force \rightarrow 2. Determine the required injection volume \rightarrow _____ 3. Select an approximated total cycle \rightarrow _____ 4. Determine the approximate resin consumption per hour \rightarrow 5. Resin brand and type \rightarrow _____ 6. Colorant brand and type \rightarrow _____ 7. Colorant % \rightarrow _____ 8. Regrind $\% \rightarrow$ **II.** Auxiliary Equipment 1. Water temperature control unit Determine the water flow to the mold \rightarrow _____ Select an initial water temperature \rightarrow _____ 2. Dryer Size the hopper dryer volume \rightarrow Size the dry air flow \rightarrow _____ Drying temperature \rightarrow _____ 3. Colorant additive % colorant required \rightarrow _____ Determine the consumption of colorant/hour \rightarrow _____ 4. Regrind additive % regrind required \rightarrow _____ Determine the consumption of regrind/hour \rightarrow _____ **III. Mold and Machine Sizing** 1. Horizontal distance \rightarrow _____ < ____ between bars 2. Vertical distance \rightarrow _____ < ____ between bars 3. Closed distance \rightarrow _____ > ____ minimum opening 4. Open distance \rightarrow _____ < ____ maximum opening 5. Ejector pattern \rightarrow _____ = ____ **IV. Injection Molding Machine Sizing**

1. Injection unit Determine % of utilization, $\%U \rightarrow$ _____ Determine the transfer position \rightarrow

Determine the corresponding temperature profile \rightarrow

____/____/____/ Determine the backpressure. Ex: 750 psi plastic (machine = $plastic/R_i$)

Determine the approximated relative position \rightarrow _____

- 2. Nozzle tip Length \rightarrow _____ Hole diameter \rightarrow _____ Contact radius \rightarrow
- 3. Sprue bushing Hole diameter \rightarrow _____ Contact radius \rightarrow _____

V. Initial process setup

- 1. Start and set the auxiliary equipment parameters
 - Dryer
 - Water temperature controller
 - Additive feeder
 - Hot runner temperature control
- 2. Injection unit
 - Start and set the barrel temperature zones
 - Set the backpressure
 - Set the recovery speed
 - Set the approximated recovery position
 - Set the extended cooling time
- 3. Press setup
 - Set mold opening positions and speeds
 - Set the mold protection
 - Set the movements of the ejectors
 - Set the movements of the cores, if applicable

VI. Determination of Machine Parameters

(once the auxiliary equipment is ready and temperatures have been reached)

- 1. Fill
 - Determine the injection pressure limit \rightarrow _____ Determine the ideal injection time \rightarrow _____ Readjust the injection volume to about 95%

Note the final recovery position \rightarrow _____

Perform the flow balance lab

2.	Hold
	Determine the hold pressure \rightarrow
	Determine the hold time \rightarrow
3.	Cooling
	Determine the water temperature of the mold \rightarrow
	Fixed/Moving \rightarrow /
	Determine the cooling time \rightarrow
4.	Recovery
	Adjust the recovery speed according to the new cooling time
	Note the recovery time \rightarrow
5.	Recalculate the auxiliary equipment according to the new cycle
	time
VII. C	Convert to Universal Parameters
Auxili	ary Equipment
1.	Water temperature control (gpm/lpm) to mold \rightarrow
	Water temperatures to mold Fixed/Movable \rightarrow /
2.	Dryer
	Hopper volume \rightarrow
	Dry air flow \rightarrow
	Drying temperature \rightarrow
3.	Additive feeder, % of colorant \rightarrow
	Color consumption per hour \rightarrow
4.	Regrind ratio, $\% \rightarrow$
	Regrind consumption per hour \rightarrow
Mold	<u>Data</u>
1.	Horizontal distance →
2.	Vertical distance \rightarrow
3.	Closed mold height \rightarrow
4.	Open mold height \rightarrow
5.	\vec{E} jector pattern \rightarrow
6.	$Material \rightarrow$
7.	Color additive \rightarrow
Injecti	on Molding Machine – (m) machine / (u) <i>Universal</i>
1.	Clamping force \rightarrow
2.	Total cycle time \rightarrow
<u> </u>	Material consumption per hour \rightarrow
4.	Press platens
•	

	Horizontal distance between tie bars \rightarrow
	Vertical distance between tie bars \rightarrow
	Verify the ejectors pattern \rightarrow
	Maximum opening \rightarrow
	$Minimum opening \rightarrow ____$
5.	Press setup
	Mold opening position \rightarrow
	Mold opening and closing time \rightarrow
6.	Injection
	$\%$ of barrel utilization \rightarrow
	Injection pressure limit \rightarrow (m) (u)
	Ideal injection velocity \rightarrow (m) (u)
	Transfer position \rightarrow (m) (u)
	Recovery position \rightarrow (m) (u)
	Temperature profile \rightarrow //
7.	Hold
	Hold pressure \rightarrow (m) (u)
	Hold time \rightarrow
8.	Cooling
	Water temperature of the mold Fixed/Movable \rightarrow /
	$\overline{Cooling}$ time \rightarrow
9.	Recovery
	Recovery speed \rightarrow
	Recovery time \rightarrow
	Backpressure \rightarrow (m) (u)

V <u>– English Terms in Spanish</u>

auger	tornillo sin fin
backpressure	contrapresión
barrel	barril
barrier screw	tornillo con barrera
blower	bomba
boost to hold	de inyección a empaque
cavity	cavidad
check ring	anilla
chiller	equipo de refrigeración
cold slugs	pedazos fríos
cores	noyos
cushion	colchón
dew point	temperatura de condensación/
-	temperatura de rocío
discharge factor	densidad de plastificación
drying hopper	tolva de secado
eject-on-the-fly	expulsión mientras el molde
	abre
ejector pins	botadores
ejector plates	platos de expulsión
fill time	tiempo de inyección
flash	rebaba
gate	bebedero
gate freeze	endurecimiento de bebederos
hold	empaque
hold pressure	presión de empaque
hold time	tiempo de empaque
hot runner	colada caliente
hot drop/hot tip	punta caliente
injection rate	flujo de llenado
injection screw	tornillo de inyección
injection speed	velocidad de llenado
jetting	chorreo
manifold	distribuidor
melt flow	flujo del fundido
melt flow number	índice de fluidez
melt pressure	presión del fundido
melt temperature	temperatura del fundido

mold protect	protección del cierre del molde
molecular weight	peso molecular
nozzle	boquilla
nozzle tip	punta de la boquilla
parting line	partición del molde
pellet	gránulo
plastic residence time	tiempo de residencia
recovery	plastificación
robot	brazo mecánico
runners	coladas
shear rate	cambio cortante/
	velocidad cambiante
shear stress	esfuerzo cortante
shear thinning	licuar por fricción
shot size	volumen de llenado/volumen
	de la unidad de inyección
sprue	palo
sprue bushing	casquillo
stack mold	molde doble
stress	esfuerzo
suck-back	rechupe
tie bars	máquina con barras
tiebarless	máquina sin barras
transfer point	posición de transferencia
transfer pressure	presión de transferencia
valve gate	válvulas de bebederos
vents	ventosas

anilla	check ring
barril	barrel
bebedero	gate
bomba	blower
boquilla	nozzle
botadores	ejector pins
brazo mecánico	robot
cambio cortante/	shear rate
velocidad cambiante	
casquillo	sprue bushing
cavidad	cavity
chorreo	jetting
colada caliente	hot runner
coladas	runners
colchón	cushion
contrapresión	backpressure
de inyección a empaque	boost to hold
densidad de plastificación	discharge factor
distribuidor	manifold
empaque	hold
endurecimiento de bebederos	gate freeze
equipo de refrigeración	chiller
esfuerzo	stress
esfuerzo cortante	shear stress
expulsión mientras el molde	eject-on-the-fly
abre	
flujo de llenado	injection rate
flujo del fundido	melt flow
gránulo	pellet
índice de fluidez	melt flow number
licuar por fricción	shear thinning
máquina con barras	tie bars
máquina sin barras	tiebarless
molde doble	stack mold
noyos	cores
palo	sprue
partición del molde	parting line
pedazos fríos	cold slugs

VI - Spanish Terms in English

peso molecular	molecular weight
plastificación	recovery
platos de expulsión	ejector plates
posición de transferencia	transfer point
presión de empaque	hold pressure
presión de transferencia	transfer pressure
presión del fundido	melt pressure
protección del cierre del	mold protect
molde	
punta caliente	hot drop/hot tip
punta de la boquilla	nozzle tip
rebaba	flash
rechupe	suck-back
temperatura de condensación/	dew point
temperatura de rocío	
temperatura del fundido	melt temperature
tiempo de empaque	hold time
tiempo de inyección	fill time
tiempo de residencia	plastic residence time
tolva de secado	drying hopper
tornillo con barrera	barrier screw
tornillo de inyección	injection screw
tornillo sin fin	auger
válvulas de bebederos	valve gate
velocidad de llenado	injection speed
ventosas	vents
volumen de llenado/volumen	shot size
de la unidad de inyección	

VII - Operational Costs

201(0 Machine	operating	cost per h	our, with c	operator al	nd profit m	argin (Nor	th Americ	an molder	s)
North America Tonnage Range	<50	50-99	100-299	300-499	500-749	750-999	1000- 1499	1500- 1999	2000- 2999	3000+
Average (US\$/hr)	\$33.31	\$35.24	\$41.92	\$52.13	\$68.14	\$83.22	\$110.28	\$119.95	\$181.68	\$230.00
Average (US\$/sec.)	\$0.00	\$0.010	\$0.012	\$0.014	\$0.019	\$0.023	\$0.031	\$0.033	\$0.050	\$0.064
Note: - this	is a referei	lusuo. consul	t vour finar	ice denarti	ment for m	ore exact v	seriles			

- assume that a profit margin of 10 to 15% is included.

(Use only to estimate productivity gains, in US\$)

Note: The cost could be divided into three types, Basic, Optional, and Special.

Basic	Ontional	Special
Depreciation	Robot	Class & Clean
Depreciation	Robot	Room
Duilding	TCU	Inspection or OC
Building		
Interest	Packing equipment	Engineering
		assistance
Maintenance	Special injector;	Tooling support
	LIM, two colors,	
	high speed,	
Electricity	Crane	Material testing
Water	Quick mold change	Packaging and
		labeling equipment
Miscellaneous	Special screw	Special product
	1	handling
Labor	Additive Feeder	Mold storage
Marginal benefits		Mold maintenance
Inspection and QC		
Material		
Waste		
Secondary services		
Mold		
Overhead		
Earnings		

Bibliography

A. Brent Strong, 2000, "Plastics Materials and Processing", ISBN: 0-13-021626-7 Application Engineering, 1981, "Application Manual Water Group Products"

Douglas C. Montgomery, 2001, "Design and Analysis of Experiment", Arizona State University, ISBN 0-471-31649-0

Georg Menges and Paul Moren, 1993, "How to Make Injection Molds", Society of Plastics Engineers, ISBN 3-446-16305-0

Hansjurgen Saechtling, 1992, "Saechtling International Plastic Handbook", Society of Plastics Engineers, ISBN 3-46-14924-4

Jay Carender, 1997, "Injection Molding Reference Guide", Advance Process Engineering

John Bozzelli, Jan 1998, "Process Optimization and Setup-card Data Requirements", Cycleset

John Bozzelli, Jan. 1997, "How to Set First-Stage Pressure", Plastics World

Lawrence E. Nielsen and Robert F. Landel, 1994, "Mechanical Properties of Polymers and Composites", ISBN 0-8247-8964-4

Peter Kennedy, 1995 "Flow Analysis of Injection Molds", ISBN:1-56990-181-3

R. J. Young and P. A. Lovell, 1991, "Intruction to Polymers", ISBN: 0-412-30640-9

Shiro Matsuoka, 1992, "Relaxation Phenomena in Polymers", Society of Plastics Engineers

Thermoplastic Troubleshooting Guide, 2000, Ashland Distribution Company

Thomas Pyzdek and Roger W. Berger, 1992, "Quality Engineering Handbook", ISBN: 0-8247-8132-5

Tony Whealan and John Goff, 1994, "The Dynisco Injection Molders Hand Book", Dynisco Instruments

ULF W. Gedde, 1995, "Polymer Physics", ISBN 0-412-62640-3

Answers

II. Injection Process Parameters

1) b. 2) b. 3) c. 4) b, c. 5) a. 6) b. 7) b, d. 8) a, d. 9) a. 10) b. 11) c, d. 12) b, c, d. 13) a. 14) b. 15) b. 16) b. 17) a. 18) b, c, d.

III. Process Graphs

1) b. 2) b. (3) c. 4) b. 5) c. 6) a. 7) c. 8) c. 9) b. 10)

IV. Plastic Morphology

1) b. 2) c. (3) c. 4) a. 5) c. 6) c. 7) c.

V. Auxiliary Equipment

1) b. 2) c. 3) a, c, e. 4) b. 5) a. 6) b. 7) c. 8) b. 9) b. 10) a. 11) a. 12) b. 13) b. 14) a.

Blending and Material Handling 1) b. 2) a.

Water Temperature Control to the Mold 1) b. 2) b. 3) c. 4) a. 5) b. 6) a.

VI. Molding from the Desk

1) b. 2a) b. 2b) a. 2c) a. 3) d.

Injection Unit Sizing

1) b. 2) a. 3) a. 4) a. 5) a. 6) c. 7) a. 8) d. **9a**) Area = 19.4in x 8.9in = **173** in²

9b)

Farthest flow path = 8.5" + 9.95" = 18.45"Thinnest wall on the path = 0.08"Thin Wall - 18.45"/0.08" = 230PF = 230 > 200; the force factor would be 2.5 ton/in²

9c) Required clamping force = $173in^2 \times 2.5 \text{ ton/in}^2$ = 433 US tons of force (1 ton = 2000 lb)

9d) Consumption = 1100/50s x 3600s/1h x 1 lb/454 gr = 174 lb/hr

9e) Required volume = 1100gr/0.92gr/cc = **1196 cc**

9f) %U = (1196cc/2480cc)*100% = **48%**

9g) $ton_{cooling} = 174 lb/hr / 50 lb/hr/ton = 3.5 ton_{cooling}$

9h) gpm = $3.5 \text{ ton}_{cooling} \ge 24 / 3^{\circ}\text{F} = 28 \text{gpm}$

- 9i) %U = 48% and is between 35% and 65%. The transfer would be between 12mm and 25mm. Transfer = 25mm - 13mm (0.48-0.65)/0.3 = 17.6mm = 0.69in
- 9j) Recovery position = $1.27W/\delta D^2$ + Transfer = $1.27*1100gr/[0.92gr/cc*(9cm)^2]$ + 1.76cm = 20.51cm = 8.07in
- 9k) Start with 700 psi (47 bars) plastic pressure.
- **91**) 5% of fill = 0.05*8.07in = **0.4 in**
- **9m**) From the Material Data sheet = $410^{\circ}F$
- 9n) From a data sheet of a generic PS:

Injection	Nominal Value	Unit
Rear Temperature	424 to 480	°F
Middle Temperature	424 to 480	°F
Front Temperature	390 to 415	°F
Nozzle Temperature	415 to 469	°F
Mold Temperature	60 to 150	°F

Since the %*U* is almost 50%, use the average. Feed zone = Compression zone = Metering zone = $452^{\circ}F$ Nozzle = $(415^{\circ}F + 469^{\circ}F)/2 = 442^{\circ}F$

90)

Residence time (cycles) = **3 cycles** Residence time(s) = 3 cycles x 50s/cycles = **150 seconds**

9p) Consumption = 174 lb/hr Drying hopper volume = 174 lb/hr x 2 hours / 35 lb/ft³ = 9.94 ft³ = 281.5 liters

9q) Dry air flow = 174lb/hr x 0.75 cfm/(lb/hr) = 130.5 cfm

10) c.

VII. Machine Rheology

1) b. 2) c. 3) c. 4) b. 5) c. 6) a. 7) a.

VIII. Determination of Injection Speed

1) a. 2) b. 3) b. 4) (a) a. 5) b. 6) a, c. 7) b. 8) b, c. 9) c. 10) d.

IX. Verifying Fill Balance

1) c. 2) b. 3) a. 4) a. 5) d. 6) b. 7) a. 8) b.

X. Determination of Hold Stage Parameters

1) a. 2) b. 3) b. 4) c. 5) a. 6) a, c. 7) b. 8) a. 9) c. 10) a.

XI. Determination of Cooling Stage Parameters

1) b. 2) b. 3) d. 4) a. 5) a. 6) a. 7) d. 8) b. 9)

$$\frac{\overline{D}_{c} + \beta_{0}T_{M} + \beta_{1}t + \beta_{2}T_{F} + \beta_{3}T_{M}t + \beta_{4}T_{M}T_{F} + \beta_{5}tT_{F} + \beta_{6}T_{M}T_{F}t}{(1) (5) (2) (4) (3)}$$

XII. Process Limits

1) a. 2) b. 3) a. 4) a. 5) b.

Index

Α

additive feeder, 95 direct and volumetric, 95 gravimetric, 98 pneumatic proportional valve, 100 amorphous, 55, 145 approximated rheology, 16, 185, 213 by power, 179, 185, 188, 209 with viscosity, 181, 188

В

backpressure, 33, 153 barrel utilization (U%), 151, 282 blending, 95 blower, 79 bulk density, 76

С

calculations, injection unit, 142 central blending system, 101 check ring, 21 clamping force, 36, 123, 125, 280 combined effect, 59, 259 condensation temperature, 71 cooling, 22 parameters, 31 stage, 20, 51, 153, 249, 265 time, 31, 111, 235, 242, 251, 258 cushion, 31, 45, 153, 240 zero, 41, 48, 241

D

decompression, 34, 46 Delta T, 81, 106 density, 143, 150, 282 desiccant bed, 80 desplazamiento de inyección, 156, 284 dewpoint, 71, 83 dieseling, 125 dryers, 78 drying, 73 flow, 72 hopper, 74 material, 70 temperature, 71 time, 73, 76 drying systems, 83 central, 85 hopper above the extruder, 84 integrated, 85 portable, 84

Ε

ejectors, 36, 138, 140

F

feeding, 95 fill balance, 224, 227 fill limitations, 200 filter, 79 force factors, 123 fountain flow effect, 148

G

gate freeze, 20, 30

Η

heat removed, 104 heat zones of the barrel, 164 heater, 81, 116 hold (pack), 20 parameters, 29 pressure, 235 time, 30, 242

I

injection, 18 flow, 27, 62, 150, 179, 285 parameters, 27 pressure limit, 42, 201 speed, 18, 42, 150, 207, 212 time, 65, 179, 191, 201, 207, 212 unit size, 142 volume, 28, 143, 179, 240 intensification ratio, 168

L

limited pressure, 47

Μ

material consumption, 103 maximum recovery, 158 melt flow, 148, 175, 225 minimum and maximum opening, 139

Ν

Newtonian flow, 178 nozzle tip, 144, 148

Ρ

peak power, 179, 213, 284 platen spacing, 138 premature transfer, 47 press calculations, 122 press movements, 35 projected area, 124, 133 pseudoplastic, 178 PVT diagram, 50

Q

questions, 37, 52, 67, 92, 102, 120, 141, 170, 195, 220, 231, 246, 262

R

recovery, 22, 96, 153 parameters, 33 position, 41, 154, 283 speed, 157 zone, 46 regeneration, 81 residence time, 76, 158 resin loader, 78 runner, 20, 31, 126, 136 cold runners, 146 hot runners, 45, 158, 229, 244

S

screw flights, 158 semi-crystalline, 55 shear rate, 177 stress, 176 thinning, 178 shot size, 142 specific density, 150, 282 sprue bushing, 144 stack mold, 137

Т

TCU, 113 temperature profiles, 164 thermal imbalance, 229 thermoplastics, 55 thermosets, 55 thin wall calculation, 129, 281 three-plate mold, 136 transfer, 18 parameters, 28 position, 161 pressure, 184 troubleshooting, 271

U

Universal data, 277 parameters, 26 Universal Molding[™] (MU[™]), 15

V

viscosity, 177

W

water flow, 106

Ζ

zero cushion, 49

Expert Opinions

"Universal MoldingTM is, in the Dominican Republic, an essential platform for the development of Dominican molders and the local industry has increasingly benefited by applying this knowledge to the improvement of its processes."

Miguel Calcaño, Plastics Consultant HDI Inc., Dominican Republic

"One of Wallyco's greatest pleasures was always the research and professional development of young Puerto Ricans. If I'm not mistaken, it was in 2000 that we provided resin and machine time to Dr. Ivan Baiges' students; among those I remember Roberto Pastor. Days of more questions than answers, which laid the foundation for corroborating or denving stories of molders and understanding the science behind the technique. Yes science, not magic, black box, or dark art. Once the technique was verified, thanks to the help of people such as Drs. Gregorio Velez and Ivan, it was reduced to its minimum essence, and a verified process of the best practices was developed. It is written at the level of the user, the person who must improve the process without formal education. There have been many changes from 2000 to this day, which will continue as Universal MoldingTM still has much to discover and teach. It is a great pride for me to have been involved in its beginnings, to have used its processes and to have trained as an instructor, and I wish Hector and Universal MoldingTM to continue to help the plastics industry and all those young Puerto Ricans who want to better themselves and their homeland with their performance."

J. Wally Cruz, Engineer and Plastics Engineer Specialist

"Universal MoldingTM is an excellent tool, not only for understanding the process of injection molding, but also for understanding the behavior of different types of plastics, in a simple way but always with a scientific basis. As an MU^{TM} student without any experience in the world of plastics, I was able to understand the groundwork and foundations of injection molding. Then, as an instructor, I could see how MU^{TM} helped so many people and industries optimize their molding processes with amazing results, not only in quality but also in economy."

Laureano J. Rodríguez, Sr. Account Manager West Contract Manufacturing

"At the beginning of the 2000s, I was part of the revolution that was barely beginning in Costa Rica about how to scientifically establish a process during my time at Abbott Laboratories, which later became Hospira, and is known today as ICU Medical. It was there that the first MU^{TM} exercise was done outside Puerto Rico, entirely in Spanish and, for the first time in Costa Rica, it showed a better way to obtain objective evidence about from where the validated parameters came in the injection molding process, making MU^{TM} the pioneer of this revolution in CR. After that, the course was opened to other companies in the industry in Costa Rica, and it has been taught year after year to the present day. Subsequently, from 2008 to 2014 I had the privilege and pleasure as a member of HDI, Inc. to participate in seminars and conferences alongside Héctor Dilán as a presenter."

Harold Gamboa Calderón, Sr. Account Manager - Distribution PolyOne Corporation (Central America and Andean Region)

"I learned about *Universal Molding*TM when I was just starting my professional career. Thanks to Héctor and the *Universal Molding*TM, my learning curve in the field of injection molding was exponential. This gave me the necessary tools to apply science during the development of different molding processes and was my foundation for the future of my career in plastics engineering.

During those first steps with *Universal MoldingTM*, together with Héctor, we managed to develop Rheology by Power, which moved away from rheology by viscosity, but at the same time obtained specific results in less time. Rheology by Power helps us greatly optimize the injection stage in a simple, short, and accurate way.

Now, after about 15 years working in the injection molding industry, I can say that *Universal Molding*TM is the basis and the most useful learning tool for anyone working in this area.

Héctor, thank you for the confidence and opportunity to work with you when I was just getting started in the industry."

Billy Torres, Technical Services Manager Microsystems UK